Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Front Immunol ; 13: 912571, 2022.
Article in English | MEDLINE | ID: covidwho-1903032

ABSTRACT

Background: Patients with primary and secondary antibody deficiency are vulnerable to COVID-19 and demonstrate diminished responses following two-dose SARS-CoV-2 vaccine schedules. Third primary vaccinations have been deployed to enhance their humoral and cellular immunity. Objectives: To determine the immunogenicity of the third primary SARS-CoV-2 immunisation in a heterogeneous cohort of patients with antibody deficiency. Methods: Participants enrolled in the COV-AD study were sampled before and after their third vaccine dose. Serological and cellular responses were determined using ELISA, live-virus neutralisation and ELISPOT assays. Results: Following a two-dose schedule, 100% of healthy controls mounted a serological response to SARS-CoV-2 vaccination, however, 38.6% of individuals with antibody deficiency remained seronegative. A third primary SARS-CoV-2 vaccine significantly increased anti-spike glycoprotein antibody seroprevalence from 61.4% to 76.0%, the magnitude of the antibody response, its neutralising capacity and induced seroconversion in individuals who were seronegative after two vaccine doses. Vaccine-induced serological responses were broadly cross-reactive against the SARS-CoV-2 B.1.1.529 variant of concern, however, seroprevalence and antibody levels remained significantly lower than healthy controls. No differences in serological responses were observed between individuals who received AstraZeneca ChAdOx1 nCoV-19 and Pfizer BioNTech 162b2 during their initial two-dose vaccine schedule. SARS-CoV-2 infection-naive participants who had received a heterologous vaccine as a third dose were significantly more likely to have a detectable T cell response following their third vaccine dose (61.5% vs 11.1%). Conclusion: These data support the widespread use of third primary immunisations to enhance humoral immunity against SARS-CoV-2 in individuals with antibody deficiency.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , Antibody Formation , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , SARS-CoV-2 , Seroepidemiologic Studies , Vaccination
2.
J Clin Immunol ; 42(5): 923-934, 2022 07.
Article in English | MEDLINE | ID: covidwho-1787846

ABSTRACT

BACKGROUND: Vaccination prevents severe morbidity and mortality from COVID-19 in the general population. The immunogenicity and efficacy of SARS-CoV-2 vaccines in patients with antibody deficiency is poorly understood. OBJECTIVES: COVID-19 in patients with antibody deficiency (COV-AD) is a multi-site UK study that aims to determine the immune response to SARS-CoV-2 infection and vaccination in patients with primary or secondary antibody deficiency, a population that suffers from severe and recurrent infection and does not respond well to vaccination. METHODS: Individuals on immunoglobulin replacement therapy or with an IgG less than 4 g/L receiving antibiotic prophylaxis were recruited from April 2021. Serological and cellular responses were determined using ELISA, live-virus neutralisation and interferon gamma release assays. SARS-CoV-2 infection and clearance were determined by PCR from serial nasopharyngeal swabs. RESULTS: A total of 5.6% (n = 320) of the cohort reported prior SARS-CoV-2 infection, but only 0.3% remained PCR positive on study entry. Seropositivity, following two doses of SARS-CoV-2 vaccination, was 54.8% (n = 168) compared with 100% of healthy controls (n = 205). The magnitude of the antibody response and its neutralising capacity were both significantly reduced compared to controls. Participants vaccinated with the Pfizer/BioNTech vaccine were more likely to be seropositive (65.7% vs. 48.0%, p = 0.03) and have higher antibody levels compared with the AstraZeneca vaccine (IgGAM ratio 3.73 vs. 2.39, p = 0.0003). T cell responses post vaccination was demonstrable in 46.2% of participants and were associated with better antibody responses but there was no difference between the two vaccines. Eleven vaccine-breakthrough infections have occurred to date, 10 of them in recipients of the AstraZeneca vaccine. CONCLUSION: SARS-CoV-2 vaccines demonstrate reduced immunogenicity in patients with antibody deficiency with evidence of vaccine breakthrough infection.


Subject(s)
COVID-19 , Primary Immunodeficiency Diseases , Viral Vaccines , Antibodies, Viral , COVID-19 Vaccines , Humans , SARS-CoV-2
3.
JAMA Netw Open ; 5(2): e220130, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1700096

ABSTRACT

Importance: Large cohorts of patients with active cancers and COVID-19 infection are needed to provide evidence of the association of recent cancer treatment and cancer type with COVID-19 mortality. Objective: To evaluate whether systemic anticancer treatments (SACTs), tumor subtypes, patient demographic characteristics (age and sex), and comorbidities are associated with COVID-19 mortality. Design, Setting, and Participants: The UK Coronavirus Cancer Monitoring Project (UKCCMP) is a prospective cohort study conducted at 69 UK cancer hospitals among adult patients (≥18 years) with an active cancer and a clinical diagnosis of COVID-19. Patients registered from March 18 to August 1, 2020, were included in this analysis. Exposures: SACT, tumor subtype, patient demographic characteristics (eg, age, sex, body mass index, race and ethnicity, smoking history), and comorbidities were investigated. Main Outcomes and Measures: The primary end point was all-cause mortality within the primary hospitalization. Results: Overall, 2515 of 2786 patients registered during the study period were included; 1464 (58%) were men; and the median (IQR) age was 72 (62-80) years. The mortality rate was 38% (966 patients). The data suggest an association between higher mortality in patients with hematological malignant neoplasms irrespective of recent SACT, particularly in those with acute leukemias or myelodysplastic syndrome (OR, 2.16; 95% CI, 1.30-3.60) and myeloma or plasmacytoma (OR, 1.53; 95% CI, 1.04-2.26). Lung cancer was also significantly associated with higher COVID-19-related mortality (OR, 1.58; 95% CI, 1.11-2.25). No association between higher mortality and receiving chemotherapy in the 4 weeks before COVID-19 diagnosis was observed after correcting for the crucial confounders of age, sex, and comorbidities. An association between lower mortality and receiving immunotherapy in the 4 weeks before COVID-19 diagnosis was observed (immunotherapy vs no cancer therapy: OR, 0.52; 95% CI, 0.31-0.86). Conclusions and Relevance: The findings of this study of patients with active cancer suggest that recent SACT is not associated with inferior outcomes from COVID-19 infection. This has relevance for the care of patients with cancer requiring treatment, particularly in countries experiencing an increase in COVID-19 case numbers. Important differences in outcomes among patients with hematological and lung cancers were observed.


Subject(s)
COVID-19/complications , Hematologic Neoplasms/mortality , Lung Neoplasms/mortality , SARS-CoV-2 , Aged , Aged, 80 and over , Cohort Studies , Drug Therapy , Female , Hematologic Neoplasms/complications , Hematologic Neoplasms/therapy , Humans , Immunotherapy , Lung Neoplasms/complications , Lung Neoplasms/therapy , Male , Middle Aged , Prospective Studies , Registries , United Kingdom
4.
Br J Haematol ; 196(4): 892-901, 2022 02.
Article in English | MEDLINE | ID: covidwho-1511287

ABSTRACT

Patients with haematological malignancies have a high risk of severe infection and death from SARS-CoV-2. In this prospective observational study, we investigated the impact of cancer type, disease activity, and treatment in 877 unvaccinated UK patients with SARS-CoV-2 infection and active haematological cancer. The primary end-point was all-cause mortality. In a multivariate analysis adjusted for age, sex and comorbidities, the highest mortality was in patients with acute leukaemia [odds ratio (OR) = 1·73, 95% confidence interval (CI) 1·1-2·72, P = 0·017] and myeloma (OR 1·3, 95% CI 0·96-1·76, P = 0·08). Having uncontrolled cancer (newly diagnosed awaiting treatment as well as relapsed or progressive disease) was associated with increased mortality risk (OR = 2·45, 95% CI 1·09-5·5, P = 0·03), as was receiving second or beyond line of treatment (OR = 1·7, 95% CI 1·08-2·67, P = 0·023). We found no association between recent cytotoxic chemotherapy or anti-CD19/anti-CD20 treatment and increased risk of death within the limitations of the cohort size. Therefore, disease control is an important factor predicting mortality in the context of SARS-CoV-2 infection alongside the possible risks of therapies such as cytotoxic treatment or anti-CD19/anti-CD20 treatments.


Subject(s)
Antigens, CD20/immunology , Antineoplastic Agents, Immunological/therapeutic use , COVID-19/complications , Hematologic Neoplasms/complications , Hematologic Neoplasms/drug therapy , Adult , Antineoplastic Agents, Immunological/adverse effects , COVID-19/etiology , COVID-19/immunology , Female , Hematologic Neoplasms/immunology , Humans , Leukemia/complications , Leukemia/drug therapy , Leukemia/immunology , Male , Multiple Myeloma/complications , Multiple Myeloma/drug therapy , Multiple Myeloma/immunology , Prospective Studies , Risk Factors
5.
Lancet Oncol ; 21(10): 1309-1316, 2020 10.
Article in English | MEDLINE | ID: covidwho-726907

ABSTRACT

BACKGROUND: Patients with cancer are purported to have poor COVID-19 outcomes. However, cancer is a heterogeneous group of diseases, encompassing a spectrum of tumour subtypes. The aim of this study was to investigate COVID-19 risk according to tumour subtype and patient demographics in patients with cancer in the UK. METHODS: We compared adult patients with cancer enrolled in the UK Coronavirus Cancer Monitoring Project (UKCCMP) cohort between March 18 and May 8, 2020, with a parallel non-COVID-19 UK cancer control population from the UK Office for National Statistics (2017 data). The primary outcome of the study was the effect of primary tumour subtype, age, and sex and on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prevalence and the case-fatality rate during hospital admission. We analysed the effect of tumour subtype and patient demographics (age and sex) on prevalence and mortality from COVID-19 using univariable and multivariable models. FINDINGS: 319 (30·6%) of 1044 patients in the UKCCMP cohort died, 295 (92·5%) of whom had a cause of death recorded as due to COVID-19. The all-cause case-fatality rate in patients with cancer after SARS-CoV-2 infection was significantly associated with increasing age, rising from 0·10 in patients aged 40-49 years to 0·48 in those aged 80 years and older. Patients with haematological malignancies (leukaemia, lymphoma, and myeloma) had a more severe COVID-19 trajectory compared with patients with solid organ tumours (odds ratio [OR] 1·57, 95% CI 1·15-2·15; p<0·0043). Compared with the rest of the UKCCMP cohort, patients with leukaemia showed a significantly increased case-fatality rate (2·25, 1·13-4·57; p=0·023). After correction for age and sex, patients with haematological malignancies who had recent chemotherapy had an increased risk of death during COVID-19-associated hospital admission (OR 2·09, 95% CI 1·09-4·08; p=0·028). INTERPRETATION: Patients with cancer with different tumour types have differing susceptibility to SARS-CoV-2 infection and COVID-19 phenotypes. We generated individualised risk tables for patients with cancer, considering age, sex, and tumour subtype. Our results could be useful to assist physicians in informed risk-benefit discussions to explain COVID-19 risk and enable an evidenced-based approach to national social isolation policies. FUNDING: University of Birmingham and University of Oxford.


Subject(s)
Coronavirus Infections/mortality , Neoplasms/mortality , Pandemics , Pneumonia, Viral/mortality , Adult , Aged , Aged, 80 and over , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/pathology , Coronavirus Infections/virology , Female , Hospitalization , Humans , Male , Middle Aged , Neoplasms/pathology , Neoplasms/virology , Pneumonia, Viral/complications , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Prospective Studies , Risk Assessment , Risk Factors , SARS-CoV-2
6.
Lancet ; 395(10241): 1919-1926, 2020 06 20.
Article in English | MEDLINE | ID: covidwho-401263

ABSTRACT

BACKGROUND: Individuals with cancer, particularly those who are receiving systemic anticancer treatments, have been postulated to be at increased risk of mortality from COVID-19. This conjecture has considerable effect on the treatment of patients with cancer and data from large, multicentre studies to support this assumption are scarce because of the contingencies of the pandemic. We aimed to describe the clinical and demographic characteristics and COVID-19 outcomes in patients with cancer. METHODS: In this prospective observational study, all patients with active cancer and presenting to our network of cancer centres were eligible for enrolment into the UK Coronavirus Cancer Monitoring Project (UKCCMP). The UKCCMP is the first COVID-19 clinical registry that enables near real-time reports to frontline doctors about the effects of COVID-19 on patients with cancer. Eligible patients tested positive for severe acute respiratory syndrome coronavirus 2 on RT-PCR assay from a nose or throat swab. We excluded patients with a radiological or clinical diagnosis of COVID-19, without a positive RT-PCR test. The primary endpoint was all-cause mortality, or discharge from hospital, as assessed by the reporting sites during the patient hospital admission. FINDINGS: From March 18, to April 26, 2020, we analysed 800 patients with a diagnosis of cancer and symptomatic COVID-19. 412 (52%) patients had a mild COVID-19 disease course. 226 (28%) patients died and risk of death was significantly associated with advancing patient age (odds ratio 9·42 [95% CI 6·56-10·02]; p<0·0001), being male (1·67 [1·19-2·34]; p=0·003), and the presence of other comorbidities such as hypertension (1·95 [1·36-2·80]; p<0·001) and cardiovascular disease (2·32 [1·47-3·64]). 281 (35%) patients had received cytotoxic chemotherapy within 4 weeks before testing positive for COVID-19. After adjusting for age, gender, and comorbidities, chemotherapy in the past 4 weeks had no significant effect on mortality from COVID-19 disease, when compared with patients with cancer who had not received recent chemotherapy (1·18 [0·81-1·72]; p=0·380). We found no significant effect on mortality for patients with immunotherapy, hormonal therapy, targeted therapy, radiotherapy use within the past 4 weeks. INTERPRETATION: Mortality from COVID-19 in cancer patients appears to be principally driven by age, gender, and comorbidities. We are not able to identify evidence that cancer patients on cytotoxic chemotherapy or other anticancer treatment are at an increased risk of mortality from COVID-19 disease compared with those not on active treatment. FUNDING: University of Birmingham, University of Oxford.


Subject(s)
Antineoplastic Agents/therapeutic use , Coronavirus Infections/complications , Coronavirus Infections/mortality , Neoplasms/complications , Neoplasms/drug therapy , Pneumonia, Viral/complications , Pneumonia, Viral/mortality , Age Factors , Aged , Betacoronavirus , COVID-19 , Cause of Death , Comorbidity , Female , Humans , Male , Middle Aged , Neoplasms/mortality , Pandemics , Prospective Studies , Risk Factors , SARS-CoV-2 , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL